Kinetochores moving away from their associated pole do not exert a significant pushing force on the chromosome
نویسندگان
چکیده
We used video-light microscopy and laser microsurgery to test the hypothesis that as a bioriented prometaphase chromosome changes position in PtK1 cells, the kinetochore moving away from its associated pole (AP) exerts a pushing force on the centromere. When we rapidly severed congressing chromosomes near the spindle equator between the sister kinetochores, the kinetochore that was originally "leading" the motion towards a pole (P) always (17/17 cells) continued moving P whereas the "trailing" kinetochore moving AP always stopped moving as soon as the operation was completed. This trailing kinetochore then initiated motion towards the pole it was originally moving away from up to 50 s later. The same result was observed (15/15 cells) when we selectively destroyed the leading (P moving) kinetochore on a congressing chromosome positioned > or = 3 microns from the pole it was moving away from. When we conducted this experiment on congressing chromosomes positioned within 3 microns of the pole, the centromere region either stopped moving, before switching into motion towards the near pole (2/4 cells), or it continued to move AP for 30-44 s (2/4 cells) before switching into P motion. Finally, kinetochore-free chromosome fragments, generated in the polar regions of PtK1 spindles, were ejected AP and often towards the spindle equator at approximately 2 microns/min. From these data we conclude that the kinetochore moving AP on a moving chromosome does not exert a significant pushing force on the chromosome. Instead, our results reveal that, when not generating a P force, kinetochores are in a "neutral" state that allows them to remain stationary or to coast AP in response to external forces sufficient to allow their K-fiber to elongate.
منابع مشابه
Mechanisms of Spindle-Pole Organization Are Influenced by Kinetochore Activity in Mammalian Cells
The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of ...
متن کاملStudies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes.
The position of a mono-oriented chromosome changes as it oscillates to and from the pole to which it is attached. Such oscillatory behavior reveals that the net force on a mono-oriented chromosome is constantly changing. Fluctuations may occur in both the polewardly directed force acting at the kinetochore and the opposing outwardly directed force associated with the aster. We have examined the...
متن کاملOscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle
During mitosis a monooriented chromosome oscillates toward and away from its associated spindle pole and may be positioned many micrometers from the pole at the time of anaphase. We tested the hypothesis of Pickett-Heaps et al. (Pickett-Heaps, J. D., D. H. Tippit, and K. R. Porter, 1982, Cell, 29:729-744) that this behavior is generated by the sister kinetochores of a chromosome interacting wit...
متن کاملPoleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis
Microtubules in the mitotic spindles of newt lung cells were marked using local photoactivation of fluorescence. The movement of marked segments on kinetochore fibers was tracked by digital fluorescence microscopy in metaphase and anaphase and compared to the rate of chromosome movement. In metaphase, kinetochore oscillations toward and away from the poles were coupled to kinetochore fiber shor...
متن کاملMicromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement.
In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements ofkinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in prean...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 135 شماره
صفحات -
تاریخ انتشار 1996